Telegram Group & Telegram Channel
Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других

Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.

Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.

Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.


🛠 Как это исправить

1️⃣ Локальная адаптация модели:

Разбить данные на сегменты (например, по диапазонам признаков или кластерам).
Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).

2️⃣ Использовать гибридные или иерархические модели:

Методы типа Mixture of Experts, которые «специализируются» на разных областях.
Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.

3️⃣ Добавить или улучшить признаки:

Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.

4️⃣ Улучшить сбор и баланс данных:

Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2



tg-me.com/ds_interview_lib/983
Create:
Last Update:

Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других

Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.

Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.

Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.


🛠 Как это исправить

1️⃣ Локальная адаптация модели:

Разбить данные на сегменты (например, по диапазонам признаков или кластерам).
Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).

2️⃣ Использовать гибридные или иерархические модели:

Методы типа Mixture of Experts, которые «специализируются» на разных областях.
Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.

3️⃣ Добавить или улучшить признаки:

Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.

4️⃣ Улучшить сбор и баланс данных:

Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/983

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from sg


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA